首页> 外文OA文献 >Sparseness Meets Deepness: 3D Human Pose Estimation from Monocular Video
【2h】

Sparseness Meets Deepness: 3D Human Pose Estimation from Monocular Video

机译:稀疏性与深度:单目视频的3D人体姿态估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper addresses the challenge of 3D full-body human pose estimation froma monocular image sequence. Here, two cases are considered: (i) the imagelocations of the human joints are provided and (ii) the image locations ofjoints are unknown. In the former case, a novel approach is introduced thatintegrates a sparsity-driven 3D geometric prior and temporal smoothness. In thelatter case, the former case is extended by treating the image locations of thejoints as latent variables. A deep fully convolutional network is trained topredict the uncertainty maps of the 2D joint locations. The 3D pose estimatesare realized via an Expectation-Maximization algorithm over the entiresequence, where it is shown that the 2D joint location uncertainties can beconveniently marginalized out during inference. Empirical evaluation on theHuman3.6M dataset shows that the proposed approaches achieve greater 3D poseestimation accuracy over state-of-the-art baselines. Further, the proposedapproach outperforms a publicly available 2D pose estimation baseline on thechallenging PennAction dataset.
机译:本文解决了单眼图像序列中3D人体人体姿势估计的挑战。这里,考虑两种情况:(i)提供了人体关节的图像位置,以及(ii)关节的图像位置是未知的。在前一种情况下,引入了一种新颖的方法,该方法集成了稀疏驱动的3D几何先验和时间平滑度。在后一种情况下,通过将关节的图像位置视为潜在变量来扩展前一种情况。训练一个深层全卷积网络以预测2D关节位置的不确定性图。通过期望最大化算法在整个序列上实现3D姿态估计,这表明在推理过程中可以方便地将2D关节位置不确定性边缘化。对Human3.6M数据集的经验评估表明,所提出的方法在最先进的基准上可获得更高的3D姿态估计精度。此外,在具有挑战性的PennAction数据集上,拟议的方法优于公开的2D姿态估计基准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号